

Development, application and validation of accelerated durability tests for stacks

S. Escribano, F. Micoud, N. Mariage, L. Guétaz (CEA) A. Casalegno, A. Baricci, E. Colombo (Polimi) M. Schmid, F. Wilhelm (ZSW)

ID-FAST Final Workshop

16th December 2021 Online in the Framework of the EFC21

Fraunhofer

ISE

INNOVATING TOGETHE

An AST approach applied on F stacks

ID-FAST Final Workshop – 2021/12/16

- Starting from the reference load cycle profile
- → Increase intensity of voltage / current stressors to accelerate performance loss degradation
- Developed first using single cell (25 cm² single serpentine)
 - Simplified procedure adapted/transferable to most of test benches and cell designs

Reference SC load cycles

- Initial adjusted load profile to nominal conditions of the targeted stack
 - i_{max} = 1A/cm² (0.64 V)
 - Fixed temperature 80°C RH 50/50% 1.5 bara
 - No stops included (operational hours preferred)

Direct modification of the ID-FAST drive cycles approach - Single cell level

- More intensive load cycles (i.e. voltage cycles)
 - Increase the current range and voltage range
 - ightarrow lower minimum and higher maximum
 - Change the frequency of low and high current period

First attempt AST SC profile

- Modifications
 - i_{max} = 1.2 A/cm² (0.6 V)
 - More frequent transitions between low and high power phases
 - Relatively more time at high power
 - Note: for development, some current steps kept identical as reference for comparisons between different cases

Direct modification of the ID-FAST drive cycles approach - Single cell level

- More intensive load cycles (i.e. voltage cycles)
 - Increase the current range and voltage range
 - ightarrow lower minimum and higher maximum
 - Change the frequency of low and high current period

Second attempt AST SC profile

- Modifications
 - i_{max} = 1.5 A/cm² as additional peak (0.5 V)
 - More frequent transitions between low and high power phases
 - Relatively more time at high power
 - Addition of short OCV steps (after peak)
 As additional stressor identified on specific tests (two current steps AST)
 - Note: for development, some current steps kept identical as reference for comparisons between different cases

- □ More intensive load cycles (i.e. voltage cycles)
 - Increase the current range and voltage range
 - ightarrow lower minimum and higher maximum
 - Change the frequency of low and high current period

Application on ~600 hours for the 3 load profiles (25 cm² - SC with CCM A)
 → Increased degradation rates confirmed at single cell level

Technology identified for the project following historical use in Kangoo cars and previous FCH-JU projects

ID-FAST drive cycles specifications

- Adapted parameters for F-design
 - Load profile i_{max} = 0.8 A/cm² (~0.6 V)
 - Nominal conditions: 80°C, 50% RH, 1.5 bara, st1.5/2
 - Stops included (short-stops, coldsoak, long stops)
 - Current density distribution (S++[®] segmented device)

Technology identified for the project following historical use in Kangoo cars and previous FCH-JU projects

90

H₂

Air Coolant

Example of result

ID-FAST drive cycles specifications

- Adapted parameters for F-design
 - Load profile i_{max} = 0.8 A/cm² (~0.6 V)
 - Nominal conditions: 80°C, 50% RH, 1.5 bara, st1.5/2
 - Stops included (short-stops, coldsoak, long stops)
 - Current density distribution (S++[®] segmented device)

Technology identified for the project following historical use in Kangoo cars and previous FCH-JU projects

ID-FAST drive cycles specifications

- Adapted parameters for F-design
 - Load profile i_{max} = 0.8 A/cm² (~0.6 V)
 - Nominal conditions: 80°C, 50% RH, 1.5 bara, st1.5/2
 - Stops included (short-stops, coldsoak, long stops)
 - Current density distribution (S++[®] segmented device)

Time (s)

LP/HP patterns

(1930 s)

(4040 s)

Note: LP/HP patterns can be defined

 \rightarrow Duration ratio #CyREF/ #CyAST = 1.43

Technology identified for the project following historical use in Kangoo cars and previous FCH-JU projects

AST methodology adapted for stack level (220 cm² - open design) Validation of ageing via characterizations at BoT and EoT

Good qualitative correspondence between REF and AST cases at EoT

- ✓ Similar ECSA loss → among validation criterion of the AST relevance (same range)
- ✓ Similar performance loss on the current range
- Acceleration assessment
 - ✓ Voltage loss (mV) AST/REF ~ x1.7 from the i-V curves (at 110 A)
 - ✓ Degradation rates (µV/h) AST / REF x5
- Orrelation based on the ratio #Cy REF / #Cy AST to reach same EoT performance: ~2,4 (535 cy REF / 220 cy AST)

→ More tests and data analyses needed for refinement and validation.

THE LEAND HYDROGEN JOHN WITH

AST methodology adapted for stack level (220 cm² - open design)
 Validation of ageing via characterizations at BoT and EoT

Some conclusions & next steps about AST approach for stacks

- AST based on exacerbated drive cycles
 - First validation conducted on a stack
 - Validation tests ongoing with other components (CCM B) on same stack design
 - Further analyses regarding the correlation method between AST & REF
 - Boundary conditions to be defined for valid application: minimum number of cycles to be applied or minimum duration; dependence on hardware design
 - Parameters to be further considered: frequencies and amplitude of LP/HP pattern (reduced dwell times) and impact of current ramps
- Adaptation of AST approach to other stack platform (e.g. S3 300 cm²)
 - Possible adaptation of exacerbated load profiles to be assessed

• Specific profiles already proposed for the combined LP/HP AST cycles

Next part of the presentation by ZSW

Reference and accelerated tests on S3 stacks

ID-FAST Final Workshop – 2021/12/16

Improved implementation of load cycle for Durability Test

- New load cycle has a smooth temperature ramp and adapted holding times
- □ Total time per cycle (w/o stops): 3659 s (\triangleq 60:59 min)
- Number of cycles: 325

Time of recording given in calendar hours

Time of recording given in calendar hours

Degradation rates obtained from polarization curves

Degradation @260 h @2.0 (ASI: @1.9) A/cm² @1.8 (ASI: @1.9) A/cm² @1.2 (ASI: @1.5) A/cm² @0.6 (ASI: @0.8) A/cm² @0.3 A/cm² @0.1 A/cm² -100 -100 -100 -100 -100 -20 0 20

■ ID-FAST ■ EU-Harmonized ■ AutoStack Core ■ INSPIRE

Initially higher degradation

Clear stabilization effect for second set of POL curves

ASI

- Alternating Low- and High-Power ASTs separated by Stops
- □ Total time per cycle (w/o stops): 514 s (\triangleq 08:34 min)
- Number of cycles: 150

□ 2 combined ASTs (17:08 min) \approx 1 load cycle (60:59 min)

- HFR in low- and high-power AST in part exacerbated compared to durability test
- Heating up and cooling down take comparatively longer due to the greater influence of the inertia of the system

- Reference durability test shows realistic degradation rates
 - Order of magnitude is comparable to previous projects
- Improved implementation of load cycle for reference durability test was tested successfully
- Low- and high-power AST successfully implemented on stack level
 - Acceleration of degradation appears promising (≈4x faster with reference to active time)
 - Further application complying to single cell test cycle is ongoing (200x LP / 200x HP)
 - Correlation factor will be further investigated

Acknowledgements

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No (779565) (project ID-FAST). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

THANK YOU FOR YOUR ATTENTION

🗾 Fraunhofer

ISE

FREUDENBERG

INNOVATING TOGETHER

