

A new load cycle and durability test procedure based on vehicle fleet data

<u>Bernd Müller</u>, Thomas Mittermeier, Thomas Hofmann (BMW Group) <u>Florian Wilhelm</u>, Michael Schmid, Jürgen Hunger, Jürgen Kaczerowski (ZSW)

ID-FAST Final Workshop

16th December 2021 Online in the Framework of the EFC21

Fraunhofer

Realistic PEM Fuel Cell Drive Cycle Development

- Boundaries for drive cycle development
- BMW requirements
- Development of "ID FAST DLC"
- Summary and conclusions of part I

Drive Cycle Development. Boundaries.

Drive Cycle Development. Boundaries.

For load cycle development: focus on load-triggered stress
 Other stressors: modular ex-situ ASTs

Modular Specific Stress Tests.

In-Spec stressors:	Off-Spec stre
olled on/off	 H₂/air fronts

- Controlle "short shut downs" (H₂ still present)
- Cold/freeze starts (involve operation strategy)

- essors:
- "long shut downs" anode under air
- Fuel starvation
- Flooding

Per h operation	Short shut-down	Cold/freeze start	H ₂ /air front	Cell reversal
Frequency:	1x / 0.5 h	1x / 5 h	1x / 250 h	1x / 1000 h
Data source:	BMW internal requirement	BMW internal requirement	From customer data, stop time >7 d	From BMW Demo fleet
Conditions / details:	H ₂ in Anode, shut cathode, apply current	<100 mV _{cell} @ load TMC's rapid warm-up	Room temp., <0.5 s residence time	Always U _{min} > -0.2 V

Modular Specific Stress Tests.

In-Spec stressors:

- Controlled on/off
 "short shut downs" (H₂ still present)
- Cold/freeze starts (involve operation strategy)

Off-Spec stressors:

- H₂/air fronts "long shut downs" – anode under air
- Fuel starvation
 Cell reversal
 Flooding

Per h operation	Short shut-down	Cold/freeze start	H ₂ /air front	Cell reversal
Frequency:	1x / 0.5 h	1x / 5 h	1x / 250 h	1x / 1000 h
Data source:	BMW internal requirement	BMW internal requirement	From customer data, stop time >7 d	From BMW Demo fleet
Conditions / details:	H ₂ in Anode, shut cathode, apply current	<100 mV _{cell} @ load TMC's rapid warm-up	Room temp., <0.5 s residence time	Always U _{min} > -0.2 V

ID-FAST Final Workshop 16th December 2021 Online in the framework of the EFC21

Proprietary 99% customer profile:

- From analysis of 1000's h real drive data
- Relevant car-class (ICE) utilized
- Implicitly includes FCEV hybridization

Proprietary 99% customer profile:

Operating map (Turndown):

- From analysis of 1000's h real drive data
- Relevant car-class (ICE) utilized
- Implicitly includes FCEV hybridization

 Includes FCS operation strategy (each point is fully defined with operation parameters)

Proprietary 99% customer profile:

- From analysis of 1000's h real drive data
- Relevant car-class (ICE) utilized
- Implicitly includes FCEV hybridization

Operating map (Turndown):

- Includes FCS operation strategy (each point is fully defined with operation parameters)
- Classify operation states according to
 - Cell voltage
 - Cathode outlet relative humidity (RH)

Solution Next: Evaluate time fractions and transitions on cell voltage base

Load Cycle from Customer Data. Load Classification.

Voltage domains:

- Simplify equi-voltage lines by vertical lines
- Divide in load classes of ~50 mV equivalent

Load Cycle from Customer Data. Load Classification.

Voltage domains:

- Simplify equi-voltage lines by vertical lines
- Divide in load classes of ~50 mV equivalent

iller **ID-FAST Final Workshop** 16th December 2021 Online in the framework of the EFC21

Load Cycle from Customer Data. Load Classification.

Voltage domains:

- Simplify equi-voltage lines by vertical lines
- Divide in load classes of ~50 mV equivalent

Temperature / RH domains:

- Simplify equi-RH lines by horizontal lines
- Divide in two temperature domains
 → corresponds to wet / dry region

Transitions between load classes?

Load Cycle from Customer Data.

17

- Not unique:
 - Order of transitions
 - Distribution of steady-state phases

Load Cycle from Customer Data.

- □ Load cycle ("ID FAST DLC") defined*
 - Load case distribution
 - Load transitions
 - Temperature / RH variation
- □ "short shut-down" defined
- □ Cold/freeze start requirements
- □ "long shut-down" requirements
- □ Cell reversal requirements
 - => Complete ID FAST durability test program is defined
 - * Actual implementation may be not straightforward, depending on testbench and stack hardware

Implementation and practical application

Motivation

- How to implement the ID-FAST DLC (dynamic load cycle) into a realistic durability test program
 - Auxiliary modules
 - Incorporation of in-spec and selected off-spec stressors
 - Addition of in-situ analysis modules
- Practical application (example PowerCell S3 short stack)
 - Consideration of applicable definition of operating conditions
 - Adjustment of gas pressure values
 - Temperature & RH control
 - Modifications to obtain stable & reproducible performance data

Appropriate implementation *is* **depending on stack hardware!**

Required definitions:

- Start-up
- Shut-down
- Break-in
- Short stop
- Cold soak
- Long stop including air/air start ("anode reactivation")
- Conditioning
- Polarization curve
- ...

Auxiliary modules, stressor modules

Required definitions:

- Start-up
- Shut-down
- Break-in
- Short stop
- Cold soak
- Long stop including air/air start ("anode reactivation")
- Conditioning
- Polarization curve
- ...

Appropriate implementation *is* **depending on stack hardware and even cell count!**

Generic templates for these modules resulting from the STACK-TEST project (FCH-JU) can be found at <u>http://stacktest.zsw-bw.de/</u>

Incorporation of in-spec and selected offspec stressors

- In-Spec stressors
 - Short stops

- Reduce electric load & gas flows to minimum values (voltage clipping)
- Reduce gas pressures to ambient
- Turn off the oxidant flow, keeping the minimum fuel flow until the mean cell voltage drops below 0.2 V.

Remain in this state for 5 minutes, no cooling down

• Turn off the electric load

Off-Spec stressors

- Air/air start ("anode reactivation", "H₂/air front")
 - Implementation not trivial, safety aspects!
 - Deviating implementations will possibly give significantly different results

Air/air start (induced by diffusion):

mimics the situation that a car is left in shutdown state without being started for a long time (several days/weeks), so diffusion will lead to a significant concentration of oxygen on the anode side

- In cold state (25°C)!
- Anode under N₂, without gas flow
- Purge cathode with air
- Stop air flow, wait for *N* minutes.
- Perform startup procedure

ID-FAST A

Analysis modules

Performance characterization

- Polarization curves under 4 reference conditions:
 - AUTOSTACK Core
 - EU Harmonized
 - INSPIRE
 - ID-FAST

Parameter	EU Harmonized	ID-FAST
Temp. coolant in	80°C	68°C
Gas inlet dewpoint A/C	64 / 53°C	58 / 43°C
Stoichiometry A/C*	1.3 / 1.5	1.4/1.6
Gas outlet pressure A/C	250 / 230 kPaabs	300 / 280 kPaabs
	inlet pressure	outlet pressure (const.)
Minimum current density for stoichiometry	0.2 A/cm ²	0.2 A/cm ²
Gas composition A	Pure H2 5.0 quality	90% H2 / 10% N2

- 4 FC-DLC cycles (harmonized fuel cell dynamic load cycle) for each set of conditions
- Electrochemical characterization
 - **CV** (Electrochemically Active Surface Area)
 - **EIS** (high frequency, mass transport and charge transfer resistances)

• ...

Combining them all ...

Practical application (example PowerCell S3 short stack)

Determine 100% load point depending on stack hardware

- For S3 stack under ID-FAST conditions 1.9 A/cm²
- Determine maximum allowable temperature at coolant outlet for "hot" operating conditions / max. load, not to exceed maximum temperature @membrane, maximum ΔT

Example current scan shunt data for S3 stack, appropriate modelling may be required in addition to assess temperature difference active area \rightarrow bipolar plate

Pressurized coolant sub-system may be necessary for testbench to avoid formation of steam bubbles!

ID-FAST

Practical application (example PowerCell S3 short stack)

Mimic system behaviour: define adapted pressure / dew point / temperature as a function of load level

Conditions for load cycle:								
	unit			cold		hot		
Performance								
Current Fraction	%	5	13	31	67	92	92	67
Current density	A/cm2	0,095	0,247	0,589	1,273	1,748	1,748	1,273
Coolant								
Temp. coolant out	°C	74	74	74	74	74	93	93
Anode								
Pressure stack out anode	bara	1,90	1,90	2,00	2,75	3,00	3,00	2,75
Dew point anode	°C	58	58	58	58	58	72	72
Cathode								
Pressure stack cathode out	bara	1,40	1,40	1,52	2,48	2,80	2,80	2,48
Dew point cathode	°C	43	43	43	43	43	57	57

* Minimum gas flow corresponding to 0.2 A/cm²

Remark: Delta T coolant outlet 19K (cold-hot), coolant inlet at cathode inlet, anode in counterflow configuration 100% load = 1.9 A/cm^2

ID-FAST Practical application (example PowerCell S3 short stack)

Challenge: appropriate dynamic adaption of pressure levels during load cycle

- Fast adaption of pressure levels, pilot time of ~15 sec needed
- Specific control algorithm to avoid overshooting and ensure fast adaption 31

Practical application (example PowerCell S3 short stack)

- Challenge: appropriate dynamic adaption of temperature & RH during load cycle
- First implementation of temperature ramps featuring steps instead of a smooth transition

Related to restrictions of test bench controls

Practical application (example PowerCell S3 short stack)

- Challenge: appropriate dynamic adaption of temperature & RH during load cycle
- First implementation of temperature ramps featuring steps instead of a smooth transition
 - I.S.set [A] —I.S [A] U.S.AveCell [V] 600 U.S.AveCell [V] I.S.set [A] I.S [A] 400 200 Ω 0 45.446.146.245.345.545.645.745.845.946T.S.CL.set [°C] T.Si.CL [°C] T.So.CL [°C] 6 R mOhm 100590 [mOhm]**Γ.S.CL.set** Ц 9 60

45.8

OpHrs [h]

45.9

46

46.1

Related to restrictions of test bench controls

45.5

45.6

45.7

45.3

45.4

 $\Gamma.So.CL$

50

46.2

- Challenge: appropriate dynamic adaption of temperature & RH during load cycle
- First implementation of temperature ramps featuring steps instead of a smooth transition

Second implementation of load cycle featuring a smooth temperature ramp and adapted dwell times (improved controls)

Second implementation of load cycle featuring a smooth temperature ramp and adapted dwell times (improved controls)

Similar challenge for RH/dewpoint controls

 Second implementation of load cycle featuring a smooth temperature ramp and adapted dwell times (improved controls)

Similar challenge for RH/dewpoint controls

 Second implementation of load cycle featuring a smooth temperature ramp and adapted dwell times (improved controls)

Similar challenge for RH/dewpoint controls

- Methodology applied is general and can be transferred to other cases / applications
- Adaption to the stack hardware employed is necessary
- It may be a long way between finalizing the definitions (DLC, additional stressor modules) and the actual application in a feasible & realistic durability test program
- Definitions and application done for the
 - ID-FAST durability test program
 - For two sets of stack hardware (PowerCell S3 & CEA F design), cf. presentation later this afternoon for results
 - For single cells (segmented POLIMI cell and 25 cm² CEA cell for stoichiometric operation, zero-gradient cells), cf. presentation later this afternoon for results
- Realistic basis for AST development
 - Intention: AST implementation should be as straightforward as possible (SC & stack)

Acknowledgements

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No. 779565.

P CELLS AND HYDROGEN JOINT

THANK YOU FOR YOUR ATTENTION

